
 

 

 

UNIT – I 

STRESS, STRAIN AND DEFORMATION OF SOLIDS 
 

 

TYPES OF STRESSES : 
 

Only two basic stresses exists : (1) normal stress and (2) shear shear stress. Other 

stresses either are similar to these basic stresses or are a combination of these e.g. bending 

stress is a combination tensile, compressive and shear stresses. Torsional stress, as encountered 

in twisting of a shaft is a shearing stress. 

 

Let us define the normal stresses and shear stresses in the following sections. 

 

Normal stresses : We have defined stress as force per unit area. If the stresses are normal to 

the areas concerned, then these are termed as normal stresses. The normal stresses are generally 

denoted by a Greek letter ( 

 
 

This is also known as uniaxial state of stress, because the stresses acts only in one direction 

however, such a state rarely exists, therefore we have biaxial and triaxial state of stresses where 

either the two mutually perpendicular normal stresses acts or three mutually perpendicular 

normal stresses acts as shown in the figures below : 
 

 

Tensile or compressive stresses : 

 

The normal stresses can be either tensile or compressive whether the stresses acts out of the 

area or into the area 
 



 

 

 

 

Shear stresses : 

 

Let us consider now the situation, where the cross – sectional area of a block of material is 

subject to a distribution of forces which are parallel, rather than normal, to the area concerned. 

Such forces are associated with a shearing of the material, and are referred to as shear forces. 

The resulting force interistes are known as shear stresses. 

 
 

The resulting force intensities are known as shear stresses, the mean shear stress being equal 

to 

 

 
Where P is the total force and A the area over which it acts. 

 

As we know that the particular stress generally holds good only at a point therefore we can 

define shear stress at a point as 

 

 
The greek symbol τ ( tau ) ( suggesting tangential ) is used to denote shear stress. 

 

However, it must be borne in mind that the stress ( resultant stress ) at any point in a body is 

basically resolved into two components and one acts perpendicular and other parallel to the 

area concerned, as it is clearly defined in the following figure. 



 

 

 

 

The single shear takes place on the single plane and the shear area is the cross - sectional of the 

rivett, whereas the double shear takes place in the case of Butt joints of rivetts and the shear 

area is the twice of the X - sectional area of the rivett. 

1. Find the stresses in each section of the bar shown in Fig. and (ii) find the total 

extension of the bar Shown in Fig. E = 2 × 105 N/mm2. Take P=40KN. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 

 



 

 

2. A member ABCD is subjected to point loads P1, P2, P3, P4 as shown in fig. Calculate the 

force P2 necessary for equilibrium, if P1 = 45 KN, P3 = 450 KN and P4 = 139 KN. Determine 

the total elongation of the member, assuming the modulus of elasticity to be 2.1 x 105 N/mm2 

 
 

 

 
𝜹𝒍 = 𝟎. 𝟒𝟗𝟏𝟒𝒎𝒎 

 
Thermal stresses, Bars subjected to tension and Compression 

 

Compound bar: In certain application it is necessary to use a combination of elements or bars 

made from different materials, each material performing a different function. In over head 

electric cables or Transmission Lines for example it is often convenient to carry the current in 

a set of copper wires surrounding steel wires. The later being designed to support the weight 

of the cable over large spans. Such a combination of materials is generally termed compound 

bars. 



 

 

Consider therefore, a compound bar consisting of n members, each having a different length 

and cross sectional area and each being of a different material. Let all member have a common 

extension ‘x' i.e. the load is positioned to produce the same extension in each member. 
 

 

 
Where Fn is the force in the nth member and An and Ln are its cross - sectional area and length. 

Let W be the total load, the total load carried will be the sum of all loads for all the members. 

Therefore, each member carries a portion of the total load W proportional of EA / L value. 

 
if the length of each individual member in same then, we may write 

Thus, the stress in member '1' may be determined as 𝜎1 = F1 / A1 

Determination of common extension of compound bars: In order to determine the common 

extension of a compound bar it is convenient to consider it as a single bar of an imaginary 

material with an equivalent or combined modulus Ec. 
 

Assumption: Here it is necessary to assume that both the extension and original lengths of the 

individual members of the compound bar are the same, the strains in all members will than be 

equal. 

 

Total load on compound bar = F1 + F2+ F3 +………+ Fn 

where F1 , F 2 ,….,etc are the loads in members 1,2 etc 

But force = stress . area,therefore 

s (A 1 + A 2 + ……+ A n ) = s1 A1 + s2 A2 + ........ +sn An 



 

 

 2 2 

= (30 − 25 ) = 215.98 mm 

S 

=  =  E 

C 

S S C 

Where s is the stress in the equivalent single bar 

Dividing throughout by the common strain Î . 

 
1.A Mild steel rod of 20 mm diameter and 300 mm long is enclosed centrally inside a hollow 

copper tube of external diameter 30 mm and internal diameter 25 mm. The ends of the rod and 

tube are brazed together, and the composite bar is subjected to an axial pull of 40 KN. If E for 

steel and copper is 200 GN/m2 and 100 GN/m2 respectively, find the stresses developed in the 

rod and the tube also find the extension of the rod. 

GIVEN DATA 

Dia of steel rod = 20 mm 
 

Areaof steel rod = AS =  20 =100 mm 
4 

 
Areaof Copper tube = AC 

 2 2 2 

4 
 

E =200GN / m2=200103 

TO FIND 

N / mm2 ; E =100GN / m2 =100103 N / mm2 

Stresses on the tube and rod 

Solution 

S C C 
: 

 
;  = 2 

ES EC EC 

p = pS + pC 

50103 = .A +  .A 
S S C C 

 

50103 = 2C.100 +C.215.98 

C =59.21N / mm2 

S 



 

 

S =118.45 N / mm2 



 

 

2.A reinforced concrete column 50cm x 50cm in section is reinforced with 4 steel bars of 2.5cm 

diameter, one in each corner. The column is carrying a load of 2 MN. Find the stresses in the 

concrete and steel bars. 



 

 

 
 

Compound bars subjected to Temp. Change : Ordinary materials expand when heated and 

contract when cooled, hence , an increase in temperature produce a positive thermal strain. 

Thermal strains usually are reversible in a sense that the member returns to its original shape 

when the temperature return to its original value. However, there here are some materials which 

do not behave in this manner. These metals differs from ordinary materials in a sence that the 

strains are related non linearly to temperature and some times are irreversible .when a material 

is subjected to a change in temp. is a length will change by an amount. 

 

dt = a .L.t 
 

or Ît= a .L.t or s t= E .a.t 
 

 
a = coefficient of linear expansoin for the material 

L = original Length t = temp. change 

Thus an increase in temperature produces an increase in length and a decrease in 

temperature results in a decrease in length except in very special cases of materials with zero 

or negative coefficients of expansion which need not to be considered here. 

 

If however, the free expansion of the material is prevented by some external force, then 

a stress is set up in the material. They stress is equal in magnitude to that which would be 

produced in the bar by initially allowing the bar to its free length and then applying sufficient 

force to return the bar to its original length. 

 

Change in Length = a L t 

Therefore, strain = a L t / L 

= a t 



 

 

Therefore ,the stress generated in the material by the application of sufficient force to remove 

this strain 

 

= strain x E 

or Stress = E a t 

Consider now a compound bar constructed from two different materials rigidly joined together, 

for simplicity. 

 

Let us consider that the materials in this case are steel and brass. 
 
 

 
If we have both applied stresses and a temp. change, thermal strains may be added to those 

given by generalized hook's law equation –e.g. 

 

 
While the normal strains a body are affected by changes in temperatures, shear strains are not. 

Because if the temp. of any block or element changes, then its size changes not its shape 

therefore shear strains do not change. 

 

In general, the coefficients of expansion of the two materials forming the compound bar will 

be different so that as the temp. rises each material will attempt to expand by different amounts. 

Figure below shows the positions to which the individual materials will expand if they are 

completely free to expand (i.e not joined rigidly together as a compound bar). The extension 

of any Length L is given by a L t 



 

 

 

 

 

 

In general, changes in lengths due to thermal strains may be calculated form equation dt = a Lt, 

provided that the members are able to expand or contract freely, a situation that exists in 

statically determinates structures. As a consequence no stresses are generated in a statically 

determinate structure when one or more members undergo a uniform temperature change. If in 

a structure (or a compound bar), the free expansion or contraction is not allowed then the 

member becomes s statically indeterminate, which is just being discussed as an example of the 

compound bar and thermal stresses would be generated. 

 

Thus the difference of free expansion lengths or so called free lengths 

 

= aB.L. t - as .L .t 
 

= ( aB - as ).L .t 
 

Since in this case the coefficient of expansion of the brass aB is greater then that for the steel as. 

the initial lengths L of the two materials are assumed equal. 

 

Conclusion 1. 

 

Extension of steel + compression brass = difference in “ free” length 

 

Applying Newton 's law of equal action and reaction the following second Conclusion also 

holds good. 

 

Conclusion 2. 

 

The tensile force applied to the short member by the long member is equal in magnitude to the 

compressive force applied to long member by the short member. 

 

Thus in this case 

 

Tensile force in steel = compressive force in brass 

 

These conclusions may be written in the form of mathematical equations as given below: 



 

 

 2 2 

= (50 − 40 ) = 225 mm 

S 

S C 

C 

S 

 

 
 

Using these two equations, the magnitude of the stresses may be determined. 

 

1.A steel rod of 20mm diameter passes centrally through a copper tube of 50mm external 

diameter and 40mm internal diameter. The tube is closed at each end by rigid plates of 

negligible thickness. The nuts are tightened lightly home on the projecting parts of the rod. If 

the temperature of the assembly is raised by 50˚C, calculate the stress developed in copper and 

steel. Take E for steel and copper as 200 GN/m2 and 100 GN/m2 and α for steel and copper as 

12 x 10-6 per ˚C and 18 x 10-6 per ˚C. 

GIVEN DATA 

Dia of steel rod = 20 mm 
 

Areaof steel rod = AS =  20 =100 mm 
4 

 
Areaof Copper tube = AC 

 2 2 2 

4 
 

Riseof temperatureT = 500 C 
 

E =200GN / m2=200103 N / mm2 ; E =100GN / m2 =100103 N / mm2 

 

 =1210−6 per 0C : 

TO FIND 

 =1810−6 per 0C 

Stresses developed in the steel 

SOLUTION 

S .AS =C .AC 

 
C .AC 225 

 

S =   
A 

= 
100 

C
 

S = 2.25C 

 .T.L + 
S .L = 

S 
E 

C 
.T.L + 

C .L 
E 

S C 

 
1210−6 50 + 

2.25C 
 

 

200103 

 
=1810−6 50 + 

C 
 

 

100103 

 

C =14.117N / mm2 



 

 

S =31.76 N / mm2 



 

 

. 

ELASTIC CONSTANTS 

 

In considering the elastic behavior of an isotropic materials under, normal, shear and 

hydrostatic loading, we introduce a total of four elastic constants namely E, G, K, and 
 

It turns out that not all of these are independent to the others. In fact, given any two of them, 

the other two can be foundout . Let us define these elastic constants 

 

(i) E = Young's Modulus of Rigidity 

 
= Stress / strain 

 

(ii) G = Shear Modulus or Modulus of rigidity 

 

= Shear stress / Shear strain 

 

(iii) µ = Possion's ratio 

 

µ = lateral strain / longitudinal strain 

 

(iv) K = Bulk Modulus of elasticity 

 

= Volumetric stress / Volumetric strain 

Where 

Volumetric strain = sum of linear stress in x, y and z direction. 

Volumetric stress = stress which cause the change in volume. 

Let us find the relations between them 

Relation between E, G and K : 
 

The relationship between E, G and K can be easily determined by eliminating from the 

already derived relations 

 

E = 2 G ( 1 + µ ) and E = 3 K ( 1 -2µ ) 

 

Thus, the following relationship may be obtained 

 

 
1.Determine the change in length, breadth and thickness of a steel bar 4m long, 30mm wide 

and 20mm thick, when subjected to an axial pull of 120KN in the direction of its length. Take 

E= 200GPa and Poisson’s ratio = 0.3. 



 

 

 



 

 

Volumetric strains in terms of principal stresses: 

 

As we know that 
 

 
A bar of 30mm diameter is subjected to a pull of 60KN. The measured extension on gauge 

length of 200mm is 0.09mm and the change in diameter is 0.0039. Calculate the Poisson’s ratio 

and value of three moduli. 



 

 

 
 

A rod of length 1m and diameter 20mm is subjected to a tensile load of 20KN. The increase in 

length of the rod is 0.30 mm and the decrease in diameter is 0.0018 mm. Calculate the poisson’s 

ratio and three moduli. 

 



 

 

 



 

 

 

 

A steel plate 300mm long, 60mm wide and 30mm deep is acted upon by the forces shown in 

figure. Determine the change in volume. Take E = 200 KN/mm2 and Poisson’s ratio = 0.3. 

 



 

 

 

 

Stresses on inclined planes 

Stresses on oblique plane: Till now we have dealt with either pure normal direct stress or pure 

shear stress. In many instances, however both direct and shear stresses acts and the resultant 

stress across any section will be neither normal nor tangential to the plane 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Material subjected to pure shear: 
 
 

 

 

 

 

Material subjected to two mutually perpendicular direct stresses: 



 

 

 
 

 

 

 

 

Material subjected to combined direct and shear stresses: 



 

 

GRAPHICAL SOLUTION – MOHR'S STRESS CIRCLE 

 

The transformation equations for plane stress can be represented in a graphical form known as 

Mohr's circle. This graphical representation is very useful in depending the relationships 

between normal and shear stresses acting on any inclined plane at a point in a stresses body. 

 

To draw a Mohr's stress circle consider a complex stress system as shown in the figure 
 

 
The above system represents a complete stress system for any condition of applied load in two 

dimensions 

 

 

 

1. The stresses at a point in a strained material is Px = 200 N/mm2 and Py = -150 N/mm2 

and q= 80 N/mm2. Find the principal plane and principal stresses. Using graphical method 

and verify with analytical method. (Solve both methods) 
 



 

 

 



 

 

 

At a point in a strained material, the principal stresses are 100 N/mm2 tensile and 60 N/mm2 

compressive. Calculate the normal stress, shear stress and resultant stress on a plane inclined 

at 50 degree to the axis of major principal stress. 



 

 

 

A point in a strained material is subjected to mutually perpendicular stresses of 600 N/mm2 

(tensile) and 400 N/mm2 (compressive). It’s also subjected to a shear stress of 100 N/mm2. 

Draw the Mohr’s circle & find the principle stress & max. shear stress from diagram. 

 

A 5mm thick aluminium plate has a width of 300mm and a length of 600mm subjected to pull 

of 15000N and 9000N respectively in axial and transverse direction. Determine the normal, 

tangential and resultant stresses on a plane 40 degree to the greatest stress. 

 



 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At a point in a strained body subjected to two mutually perpendicular normal tensile stresses 

of magnitude 30MPa and 12MPa accompanied by a shear stress of 16MPa. Locate the principal 

planes and evaluate the principal stresses. Also calculate maximum shear stress. Check your 

answer in graphical method using Mohr’s circle. 



 

 

 



 

 

 



 

 

UNIT-II 

TRANSVERSE LOADING ON BEAMS AND STRESSES IN BEAM 
 

 

A beam is a [[structural element]] that primarily resists loads applied laterally to the 

beam's axis. Its mode of deflection is primarily by bending. The loads applied to the beam 

result in reaction forces at the beam's support points. The total effect of all the forces acting on 

the beam is to produce shear forces and bending moments within the beam, that in turn induce 

internal stresses, strains and deflections of the beam. Beams are characterized by their manner 

of support, profile (shape of cross-section), equilibrium conditions, length, and their material. 

Types of beams 

 
1. Simply supported – a beam supported on the ends which are free to rotate and have no 

moment resistance. 

2. Fixed – a beam supported on both ends and restrained from rotation. 

3. Over hanging – a simple beam extending beyond its support on one end. 

4. Double overhanging – a simple beam with both ends extending beyond its supports on 

both ends. 

5. Continuous – a beam extending over more than two supports. 

6. Cantilever – a projecting beam fixed only at one end. 

7. Trussed – a beam strengthened by adding a cable or rod to form a truss. 
 
 

Types of Transverse loading on Beams; 



 

 

 
 

Concept of Shear Force and Bending moment in beams: 

 

When the beam is loaded in some arbitrarily manner, the internal forces and moments are 

developed and the terms shear force and bending moments come into pictures which are helpful 

to analyze the beams further. Let us define these terms 



 

 

 
 

 
 

Fig 1 

 

Now let us consider the beam as shown in fig 1(a) which is supporting the loads P1, P2, P3 and 

is simply supported at two points creating the reactions R1 and R2 respectively. Now let us 

assume that the beam is to divided into or imagined to be cut into two portions at a section AA. 

Now let us assume that the resultant of loads and reactions to the left of AA is ‘F' vertically 

upwards, and since the entire beam is to remain in equilibrium, thus the resultant of forces to 

the right of AA must also be F, acting downwards. This forces ‘F' is as a shear force. The 

shearing force at any x-section of a beam represents the tendency for the portion of the beam 

to one side of the section to slide or shear laterally relative to the other portion. 

 

Therefore, now we are in a position to define the shear force ‘F' to as follows: 

 

At any x-section of a beam, the shear force ‘F' is the algebraic sum of all the lateral components 

of the forces acting on either side of the x-section. 

 

Sign Convention for Shear Force: 

 

The usual sign conventions to be followed for the shear forces have been illustrated in figures 

2 and 3. 

 

 
Fig 2: Positive Shear Force 



 

 

 

 
 

Fig 3: Negative Shear Force 
 

Bending Moment: 
 

 

 

Fig 4 

 

Let us again consider the beam which is simply supported at the two prints, carrying loads P1, 

P2 and P3 and having the reactions R1 and R2 at the supports Fig 4. Now, let us imagine that the 

beam is cut into two potions at the x-section AA. In a similar manner, as done for the case of 

shear force, if we say that the resultant moment about the section AA of all the loads and 

reactions to the left of the x-section at AA is M in C.W direction, then moment of forces to the 

right of x-section AA must be ‘M' in C.C.W. Then ‘M' is called as the Bending moment and is 

abbreviated as B.M. Now one can define the bending moment to be simply as the algebraic 

sum of the moments about an x-section of all the forces acting on either side of the section 

 

Sign Conventions for the Bending Moment: 

 

For the bending moment, following sign conventions may be adopted as indicated in Fig 5 

and Fig 6. 



 

 

 

  

 

Fig5:Positive Bending Moment Fig 6: Negative Bending Moment 

 

Some times, the terms ‘Sagging' and Hogging are generally used for the positive and negative 

bending moments respectively. 

 

Procedure for drawing shear force and bending moment diagram: 

Preamble: 

The advantage of plotting a variation of shear force F and bending moment M in a beam as a 

function of ‘x' measured from one end of the beam is that it becomes easier to determine the 

maximum absolute value of shear force and bending moment. 

 

Further, the determination of value of M as a function of ‘x' becomes of paramount importance 

so as to determine the value of deflection of beam subjected to a given loading. 

 

Construction of shear force and bending moment diagrams: 

 

A shear force diagram can be constructed from the loading diagram of the beam. In order to 

draw this, first the reactions must be determined always. Then the vertical components of forces 

and reactions are successively summed from the left end of the beam to preserve the 

mathematical sign conventions adopted. The shear at a section is simply equal to the sum of all 

the vertical forces to the left of the section. 

 

When the successive summation process is used, the shear force diagram should end up with 

the previously calculated shear (reaction at right end of the beam. No shear force acts through 

the beam just beyond the last vertical force or reaction. If the shear force diagram closes in this 

fashion, then it gives an important check on mathematical calculations. 

 

The bending moment diagram is obtained by proceeding continuously along the length of beam 

from the left hand end and summing up the areas of shear force diagrams giving due regard to 

sign. The process of obtaining the moment diagram from the shear force diagram by summation 

is exactly the same as that for drawing shear force diagram from load diagram. 

 

It may also be observed that a constant shear force produces a uniform change in the bending 

moment, resulting in straight line in the moment diagram. If no shear force exists along a certain 

portion of a beam, then it indicates that there is no change in moment takes place. It may also 

further observe that dm/dx= F therefore, from the fundamental theorem of calculus the 

maximum or minimum moment occurs where the shear is zero. In order to check the validity 

of the bending moment diagram, the terminal conditions for the moment must be satisfied. If 

the end is free or pinned, the computed sum must be equal to zero. If the end is built in, the 



 

 

moment computed by the summation must be equal to the one calculated initially for the 

reaction. These conditions must always be satisfied. 

 

Simply supported beam subjected to a central load (i.e. load acting at the mid-way) 
 

 
By symmetry the reactions at the two supports would be W/2 and W/2. now consider any 

section X-X from the left end then, the beam is under the action of following forces. 
 
 

 

.So the shear force at any X-section would be = W/2 [Which is constant upto x < l/2] 

 

If we consider another section Y-Y which is beyond l/2 then 

 

 
for all values greater = l/2 

Hence S.F diagram can be plotted as, 

 

 
.For B.M diagram: 

 

If we just take the moments to the left of the cross-section, 



 

 

 

 
 

Which when plotted will give a straight relation i.e. 
 
 

 

It may be observed that at the point of application of load there is an abrupt change in the 

shear force, at this point the B.M is maximum. 

 

A cantilever beam subjected to U.d.L, draw S.F and B.M diagram. 
 
 

 

Here the cantilever beam is subjected to a uniformly distributed load whose intensity is given 

w / length. 

 

Consider any cross-section XX which is at a distance of x from the free end. If we just take 

the resultant of all the forces on the left of the X-section, then 

 

S.Fxx = -Wx for all values of ‘x' ------------(1) 
 

S.Fxx = 0 



 

 

S.Fxx at x=1 = -Wl 

 

So if we just plot the equation No. (1), then it will give a straight line relation. Bending 

Moment at X-X is obtained by treating the load to the left of X-X as a concentrated load of 

the same value acting through the centre of gravity. 

 

Therefore, the bending moment at any cross-section X-X is 
 
 

 
The above equation is a quadratic in x, when B.M is plotted against x this will produces a 

parabolic variation. 

 

The extreme values of this would be at x = 0 and x = l 

 

 
Hence S.F and B.M diagram can be plotted as follows: 

 
 

 

Simply supported beam subjected to a uniformly distributed load [U.D.L]. 
 

 
 

 

The total load carried by the span would be 



 

 

= intensity of loading x length 
 

= w x l 
 

By symmetry the reactions at the end supports are each wl/2 
 

If x is the distance of the section considered from the left hand end of the beam. 
 

S.F at any X-section X-X is 
 

Giving a straight relation, having a slope equal to the rate of loading or intensity 
of the loading. 

 

 

The bending moment at the section x is found by treating the distributed load as 
acting at its centre of gravity, which at a distance of x/2 from the section 

 

 
 

 

So the equation (2) when plotted against x gives rise to a parabolic curve and 

the shear force and bending moment can be drawn in the following way will 

appear as follows: 



 

 

 
 

5. Couple. 

 

When the beam is subjected to couple, the shear force and Bending moment diagrams may be 

drawn exactly in the same fashion as discussed earlier. 
 

 
Simple Bending Theory OR Theory of Flexure for Initially Straight Beams 

(The normal stress due to bending are called flexure stresses) 

Preamble: 

 

When a beam having an arbitrary cross section is subjected to a transverse loads the beam 

will bend. In addition to bending the other effects such as twisting and buckling may occur, 

and to investigate a problem that includes all the combined effects of bending, twisting and 

buckling could become a complicated one. Thus we are interested to investigate the bending 

effects alone, in order to do so, we have to put certain constraints on the geometry of the 

beam and the manner of loading. 

 

Assumptions: 

 

The constraints put on the geometry would form the assumptions: 

 

1. Beam is initially straight , and has a constant cross-section. 



 

 

2. Beam is made of homogeneous material and the beam has a longitudinal plane of 

symmetry. 

 

3. Resultant of the applied loads lies in the plane of symmetry. 

 

4. The geometry of the overall member is such that bending not buckling is the primary cause 

of failure. 

 

5. Elastic limit is nowhere exceeded and ‘E' is same in tension and compression. 

 

6. Plane cross - sections remains plane before and after bending. 
 

 

 

 

Let us consider a beam initially unstressed as shown in fig 1(a). Now the beam is subjected to 

a constant bending moment (i.e. ‘Zero Shearing Force') along its length as would be obtained 

by applying equal couples at each end. The beam will bend to the radius R as shown in Fig 

1(b) 

 

As a result of this bending, the top fibers of the beam will be subjected to tension and the 

bottom to compression it is reasonable to suppose, therefore, that some where between the 

two there are points at which the stress is zero. The locus of all such points is known as 

neutral axis . The radius of curvature R is then measured to this axis. For symmetrical 

sections the N. A. is the axis of symmetry but what ever the section N. A. will always pass 

through the centre of the area or centroid. 

 

The above restrictions have been taken so as to eliminate the possibility of 'twisting' of 

the beam. 

 

Concept of pure bending: 

 

Loading restrictions: 

 

As we are aware of the fact internal reactions developed on any cross-section of a beam may 

consists of a resultant normal force, a resultant shear force and a resultant couple. In order to 

ensure that the bending effects alone are investigated, we shall put a constraint on the loading 

such that the resultant normal and the resultant shear forces are zero on any cross-section 

perpendicular to the longitudinal axis of the member, 

 

That means F = 0 



 

 

 

since or M = constant. 

 

Thus, the zero shear force means that the bending moment is constant or the bending is same 

at every cross-section of the beam. Such a situation may be visualized or envisaged when the 

beam or some portion of the beam, as been loaded only by pure couples at its ends. It must be 

recalled that the couples are assumed to be loaded in the plane of symmetry. 
 
 

 

 

 

 

 

When a member is loaded in such a fashion it is said to be in pure bending. 
 

Bending Stresses in Beams or Derivation of Elastic Flexural formula : 
 

In order to compute the value of bending stresses developed in a loaded beam, let us consider 

the two cross-sections of a beam HE and GF , originally parallel as shown in fig 1(a).when 

the beam is to bend it is assumed that these sections remain parallel i.e. H'E' and G'F' , the 

final position of the sections, are still straight lines, they then subtend some angle  
 

Consider now fiber AB in the material, at adistance y from the N.A, when the beam bends 

this will stretch to A'B' 

 

 
Since CD and C'D' are on the neutral axis and it is assumed that the Stress on the neutral axis 

zero. Therefore, there won't be any strain on the neutral axis 



 

 

 

 
 
 

 

Consider any arbitrary a cross-section of beam, as shown above now the strain on a fibre at a 

distance ‘y' from the N.A, is given by the expression 

 

 
Now the term is the property of the material and is called as a second moment of area 

of the cross-section and is denoted by a symbol I. 

 

Therefore 

 

 
This equation is known as the Bending Theory Equation. The above proof has involved the 

assumption of pure bending without any shear force being present. Therefore this termed as the 

pure bending equation. This equation gives distribution of stresses which are normal to cross-

section i.e. in x-direction. 



 

 

 

 

Shearing Stresses in Beams 

 

All the theory which has been discussed earlier, while we discussed the bending stresses in 

beams was for the case of pure bending i.e. constant bending moment acts along the entire 

length of the beam. 
 
 

 

Let us consider the beam AB transversely loaded as shown in the figure above. Together with 

shear force and bending moment diagrams we note that the middle potion CD of the beam is 

free from shear force and that its bending moment. M = P.a is uniform between the portion C 

and D. This condition is called the pure bending condition. 

 

Since shear force and bending moment are related to each other F= dM/dX (eq) therefore if the 

shear force changes than there will be a change in the bending moment also, and then this won't 

be the pure bending. 

 

Conclusions : 

 

Hence one can conclude from the pure bending theory was that the shear force at each X- 

section is zero and the normal stresses due to bending are the only ones produced. 

 

In the case of non-uniform bending of a beam where the bending moment varies from one X- 

section to another, there is a shearing force on each X-section and shearing stresses are also 

induced in the material. The deformation associated with those shearing stresses causes “ 

warping “ of the x-section so that the assumption which we assummed while deriving the 

 
relation that the plane cross-section after bending remains plane is violated. Now due 

to warping the plane cross=section before bending do not remain plane after bending. This 

complicates the problem but more elaborate analysis shows that the normal stresses due to 

 
bending, as calculated from the equation . 



 

 

The above equation gives the distribution of stresses which are normal to the cross-section that 

is in x-direction or along the span of the beam are not greatly altered by the presence of these 

shearing stresses. Thus, it is justifiable to use the theory of pure bending in the case of non 

uniform bending and it is accepted practice to do so. 

 

Let us study the shear stresses in the beams. 

 

Concept of Shear Stresses in Beams : 

 

By the earlier discussion we have seen that the bending moment represents the resultant of 

certain linear distribution of normal stresses x over the cross-section. Similarly, the shear force 

Fx over any cross-section must be the resultant of a certain distribution of shear stresses. 
 

Derivation of equation for shearing stress : 
 

 
 

 

 

 

Assumptions : 

 

1. Stress is uniform across the width (i.e. parallel to the neutral axis) 

 

2. The presence of the shear stress does not affect the distribution of normal bending stresses. 

 

It may be noted that the assumption no.2 cannot be rigidly true as the existence of shear stress 

will cause a distortion of transverse planes, which will no longer remain plane. 

 

In the above figure let us consider the two transverse sections which are at   a 

distance ‘ δx' apart. The shearing forces and bending moments being F, F + δF and M, M 

+ δM respectively. Now due to the shear stress on transverse planes there will be a 

complementary shear stress on longitudinal planes parallel to the neutral axis. 

 

Let τ be the value of the complementary shear stress (and hence the transverse shear stress) at 

a distance ‘Y'0 from the neutral axis. Z is the width of the x-section at this position 
 

A is area of cross-section cut-off by a line parallel to the neutral axis. 

 
= distance of the centroid of Area from the neutral axis. 



 

 

Let σ, σ+ dσ are the normal stresses on an element of area δA at the two transverse sections, 

then there is a difference of longitudinal forces equal to ( dσ . δA) , and this quantity summed 

over the area A is in equilibrium with the transverse shear stress on the longitudinal plane of 

area z δx . 

 

 
The figure shown below indicates the pictorial representation of the part. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

So substituting 



 

 

Where ‘z' is the actual width of the section at the position where ‘ότ ' is being calculated and I 

is the total moment of inertia about the neutral axis. 

 

Bending of Composite or Flitched Beams: 
 

A composite beam is defined as the one which is constructed from a combination of materials. 

If such a beam is formed by rigidly bolting together two timber joists and a reinforcing steel 

plate, then it is termed as a flitched beam. 

 

The bending theory is valid when a constant value of Young's modulus applies across a section 

it cannot be used directly to solve the composite-beam problems where two different materials, 

and therefore different values of E, exists. The method of solution in such a case is to replace 

one of the materials by an equivalent section of the other. 
 

 

Consider, a beam as shown in figure in which a steel plate is held centrally in an appropriate 

recess/pocket between two blocks of wood .Here it is convenient to replace the steel by an 

equivalent area of wood, retaining the same bending strength. i.e. the moment at any section 

must be the same in the equivalent section as in the original section so that the force at any 

given dy in the equivalent beam must be equal to that at the strip it replaces. 

 

 

Hence to replace a steel strip by an equivalent wooden strip the thickness must be multiplied 

by the modular ratio E/E'. 

 

The equivalent section is then one of the same materials throughout and the simple bending 

theory applies. The stress in the wooden part of the original beam is found directly and that in 

the steel found from the value at the same point in the equivalent material as follows by utilizing 

the given relations. 



 

 

 

 
 

Stress in steel = modular ratio x stress in equivalent wood 

 

The above procedure of course is not limited to the two materials treated above but applies well 

for any material combination. The wood and steel flitched beam was nearly chosen as a just 

for the sake of convenience. 

 

Assumption 

 

In order to analyze the behavior of composite beams, we first make the assumption that the 

materials are bonded rigidly together so that there can be no relative axial movement between 

them. This means that all the assumptions, which were valid for homogenous beams are valid 

except the one assumption that is no longer valid is that the Young's Modulus is the same 

throughout the beam. 

 

The composite beams need not be made up of horizontal layers of materials as in the earlier 

example. For instance, a beam might have stiffening plates as shown in the figure below. 
 

 
Again, the equivalent beam of the main beam material can be formed by scaling the breadth of 

the plate material in proportion to modular ratio. Bearing in mind that the strain at any level is 

same in both materials, the bending stresses in them are in proportion to the Young's modulus. 
 



 

 

A cantilever 6m long carries load of 30, 70, 40 and 60KN at a distance of 0, 0.6, 1.5 and 2.4m 

respectively from the free end. Draw the shear force and bending moment diagrams for the 

cantilever beam 
 

 
In this there is an abrupt change of loading beyond a certain point thus, we shall have to be 

careful at the jumps and the discontinuities. 
 

For the given problem, the values of reactions can be determined as 

R2 = 3800N and R1 = 5400N 



 

 

The shear force and bending moment diagrams can be drawn by considering the X-sections at 

the suitable locations. 
 

 
A simply supported beam of rectangular cross section 60 x 35 mm and 3m long carrying a load 

of 5KN at mid span. Determine the maximum bending stress induced in the beam. 
 

 



 

 

 
 

 

 

 
3.1 Torsion of Circular Shafts 

a. Simplifying assumptions 

UNIT-III 

TORSION 

During the deformation, the cross sections are not distorted in any manner they remain 

plane, and the radius r does not change. In addition, the length L of the shaft remains constant. 
 

Figure 3.1 

Deformation of a circular shaft caused by the torque T. The initially straight line AB deforms 

into a helix. 

Based on these observations, we make the following 

Assumptions: 

٠ Circular cross sections remain plane (do not warp) and perpendicular to the axis of the shaft. 

٠ Cross sections do not deform (there is no strain in the plane of the cross section). 

٠ The distances between cross sections do not change (the axial normal strain is zero). 



 

 

Each cross section rotates as a rigid entity about the axis of the shaft. Although this conclusion 

is based on the observed deformation of a cylindrical shaft carrying a constant internal torque, 



 

 

we assume that the result remains valid even if the diameter of the shaft or the internal torque 

varies along the length of the shaft. 

b. Compatibility 

Because the cross sections are separated by an infinitesimal distance, the difference in 

their rotations, denoted by the angle dθ, is also infinitesimal. 

As the cross sections undergo the relative rotation dθ, CD deforms into the helix CD. 

By observing the distortion of the shaded element, we recognize that the helix angle γis the 

shear strain of the element. 

 

 

From the geometry of Fig.3.2(a), we obtain DD´= ρ dθ=γdx , from which the shear strain γ is 
(3.1) 

𝛾 = 
𝑑𝜃 

𝜌 
𝑑𝑥 

The quantity dθ/dx is the angle of twist per unit length, where θ is expressed in radians. The 

corresponding shear stress, illustrated in Fig. 3.2 (b), is determined from Hooke´s law: 

(3.2) 

𝑟 = 𝐺𝛾 = 𝐺 
𝑑𝜃 

𝜌 
𝑑𝑥 

strain of a material element caused by twisting of the shaft; 

(b) the corresponding shear stress. 
 

 

 

 
the shear stress varies linearly with the radial distance ρ from the axial of the shaft. 



 

 

𝑟 = 𝐺𝛾 = 𝐺 
𝑑𝜃 

𝜌 
𝑑𝑥 

 

The variation of the shear stress acting on the cross section is illustrated in Fig. 3.3. The 

maximum shear stress, denoted by 
τmax , occurs at the surface of the shaft. 

 

Note that the above derivations assume neither a constant internal torque nor a constant cross 

section along the length of the shaft. 

 
 

Figure 3.3 Distribution of shear stress along the radius of a circular shaft. 
 

 

Fig. 3.4 shows a cross section of the shaft containing a differential element of area dA loaded 

at the radial distance ρ from the axis of the shaft. 
 

 

 

 

 
 

 
 

Figure 3.4 Calculating the Resultant of the shear stress acting on the cross section. 

Resultant is a couple equal to the internal torque T. 



 

 

The shear force acting on this area is dP = τdA = G (dθ/dx) ρ dA, directed perpendicular 

to the radius. Hence, the moment (torque) of dP about the center o is ρ dP = G (dθ/dx) ρ dA. 

Summing the contributions and equating the result to the internal torque yields. 

 
∫ 𝜌𝑑𝑃 = 𝑇 

𝐺 
𝑑𝜃 

∫ 𝜌2𝑑𝐴 = 𝑇 
𝑑𝑥 

Recognizing that is the polar moment of inertia of the crosssectional area, we can write this 

equation as G (dθ/dx) J = T , or 
𝑑𝜃 

 
 

𝑑𝑥 

𝑇 
= 
𝐺𝐽 

 

The rotation of the cross section at the free end of the shaft, called the angle of twist θ , is 

obtained by integration: 
 

𝐿 
𝜃 = ∫ 𝑑𝜃 = ∫ 

𝐿 𝑇  
𝑑𝑥 

0 0 𝐺𝐽 
 

As in the case of a prismatic bar carrying a constant torque, then reduces the torque-twist 

relationship 

𝜃 = 
𝑇𝐿 

 
 

𝐺𝐽 
 

G (dθ/dx) = T/J , which substitution into Eq. (3.2), 

𝑟 = 𝐺𝛾 = 𝐺 

 
𝑑𝜃 

𝜌 
𝑑𝑥 

gives the shear stress τ acting at the distance ρ from the center of the shaft, Torsion formulas 
𝑇𝜌 

𝑟 = 
𝐽 

The maximum shear stress τmax is found by replacing ρ by the radius r of the shaft: 
𝑇𝑟 

𝑟𝑚𝑎𝑥  =  
𝐽 

Because Hook´s law was used in the derivation of Eqs. (3.2)- (3.5), these formulas are valid if 
the shear stresses do not exceed the proportional limit of the material shear. Furthermore, these 

formulas are applicable only to circular shafts, either solid or hollow. 

 

The expressions for the polar moments of circular areas are 

Solid shaft 
 

 

 

Hollow shaft 

 

2𝑇 16𝑇 

 

2𝑇 16𝑇 



 

 

2 , 

 

Figure 3.6 Polar moments of inertia of circular areas. 

 

Shafts are used to transmit power. The power ζ transmitted by a torque T rotating at the angular 

speed ω is given by ζ =T ω, 

where ω is measured in radians per unit time. 

 

If the shaft is rotating with a frequency of f revolutions per unit time, then ω = 2π f , which 

gives ζ = T (2π f ). Therefore, the torque can be expressed as 
 

 

𝑇 = 
𝜁 

2𝜋𝑓 

 

Composite shafts: (in series) 

 

If two or more shaft of different material, diameter or basic forms are connected together in 

such a way that each carries the same torque, then the shafts are said to be connected in series 

& the composite shaft so produced is therefore termed as series – connected. 
 

 

Here in this case the equilibrium of the shaft requires that the torque ‘T' be the same through 

out both the parts. 

 

In such cases the composite shaft strength is treated by considering each component shaft 

separately, applying the torsion – theory to each in turn. The composite shaft will therefore be 

as weak as its weakest component. If relative dimensions of the various parts are required then 

a solution is usually effected by equating the torque in each shaft e.g. for two shafts in series 

 

 
In some applications it is convenient to ensure that the angle of twist in each shaft are equal 

 

i.e. 1 = so that for similar materials in each shaft 
 

The total angle of twist at the free end must be the sum of angles 1 = 



 

 

Composite shaft parallel connection: If two or more shafts are rigidly fixed together such 

that the applied torque is shared between them then the composite shaft so formed is said to be 

connected in parallel. 
 
 

 

For parallel connection. 

 

Total Torque T = T1 + T2 

 

 
In this case the angle of twist for each portion are equal and 

 

 
for equal lengths(as is normaly the case for parallel shafts) 

 

This type of configuration is statically indeterminate, because we do not know how the applied 

torque is apportioned to each segment, To deal such type of problem the procedure is exactly 

the same as we have discussed earlier, 

 

Thus two equations are obtained in terms of the torques in each part of the composite shaft and 

the maximun shear stress in each part can then be found from the relations. 

 

 
A solid circular shaft is required transmit 95kW at 150rpm. Find out the diameter of the shaft 

if permissible shear stress is 60MPa and angle of twist is 0.3° per meter length. Take C= 1 x 

105 N/mm2. 

Given Data 



 

 

 

A hollow shaft with diameter ratio 3/5 is required transmit 450 kW at 120rpm. The shearing 

stress in the shaft must not exceed 60 N/mm2 and the twist in a length of 2.5 m is not to exceed 

1°. Calculate the minimum external diameter of the shaft. C= 80 N/mm2. 

Given Data 

 



 

 

 
 

 
 

A hollow shaft having an inside diameter 60% of its outer diameter, is to replace a solid shaft 

transmitting in the same power at the same speed. Calculate percentage saving in material, if 

the material to be is also the same. 



 

 

 
 

Design a suitable diameter for a shaft required to transmit 120KW at 180 rpm. The shear stress 

in the shaft not to exceed 70N/mm2 and the maximum torque exceeds the mean by 40%. 

Calculate the angle of twist in a length of 2m. Take C= 0.8 x 105 N/mm2. 
 
 

 



 

 

 



 

 

 

 
 
 
 

The elongation of the bar is  
 
 

𝜹 = 

 
 
𝟔𝟒𝑾𝑹𝟑𝒏 

 
 

𝑪𝒅𝟒 

Notice that the deformation δ is directly proportional to the applied load P. The ratio of P 

to δ is called the spring constant k and is equal to 

𝑾 𝑪𝒅𝟒 
 

Springs in Series 

𝑲 = 
𝜹 

= 
𝟔𝟒𝑹𝟑𝒏 

For two or more springs with spring laid in series, the resulting spring constant k is given by 
 
 

 
 

 
 
 

Springs in Parallel 

1 1 
= 

𝐾 𝐾1 

1 
+ 
𝐾2 

 

+. … … … .. 

For two or more springs in parallel, the resulting spring constant is 



 

 

 

A close coiled helical spring is to have a stiffness of 1.5 N/mm of compression under a 

maximum load of 60 N and maximum shearing stress of 125 N/mm2. The solid length of the 

spring (ie., when the coils are touching) is to be 50 mm. Find the diameter of the wire, mean 

diameter of the coil and no. of coil required. Take C= 4.5x104 N/mm2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

OR 

Derive the relation for deflection of a closely coiled helical spring subjected to an axial 

downward load W. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A closely coiled helical spring of mean diameter 20cm is made of 3cm diameter rod and has 

16 turns. A weight of 3kN is dropped on this spring. Find the height by which the weight should 

be dropped before striking the spring so that the spring may be compressed by 18cm. Take C= 

8 x 104 N/mm2. 



 

 

 

In open coiled helical spring consists of 12 coils, the stress due to bending and twisting are 75 

MPa and 92 MPa respectively. When the spring is axially loaded, find the maximum 

permissible load and diameter of wire for a maximum extension of 25mm. Assume spring index 

as 9. Take E = 210 GPa and C = 80GPa. 

 



 

 

 
 

A closed coil helical spring made out of 8mm diameter wire has 18 coils. Each coil is of 80mm 

mean diameter. If the maximum allowable stress in the spring is 140Mpa, determine the 

allowable load on the spring, elongation of the spring and stiffness of the spring. Take C = 82 

KN/mm2 
 



 

 

 

 
 

A laminated spring carries a central load of 5200N and it is made of ‘n’ number of 

plates,80mm wide, 7mm thick and length 500mm. Find the number of plates, if the 

maximum deflection is 10mm. Let E = 2x105N/mm2
 

Given: 

W=5200N 

b=80mm 

t=7mm 

L=500mm 

d=10mm 

E = 2x105N/mm2
 

 



 

 

UNIT-IV 

DEFLECTION OF BEAMS 

Deflection of Beams 

Introduction: 

In all practical engineering applications, when we use the different components, normally we 

have to operate them within the certain limits i.e. the constraints are placed on the performance 

and behavior of the components. For instance we say that the particular component is supposed 

to operate within this value of stress and the deflection of the component should not exceed 

beyond a particular value. 

 

In some problems the maximum stress however, may not be a strict or severe condition but 

there may be the deflection which is the more rigid condition under operation. It is obvious 

therefore to study the methods by which we can predict the deflection of members under lateral 

loads or transverse loads, since it is this form of loading which will generally produce the 

greatest deflection of beams. 

 

Assumption: The following assumptions are undertaken in order to derive a differential 

equation of elastic curve for the loaded beam 

 

1. Stress is proportional to strain i.e. hooks law applies. Thus, the equation is valid only for 

beams that are not stressed beyond the elastic limit. 

 

2. The curvature is always small. 

 

3. Any deflection resulting from the shear deformation of the material or shear stresses is 

neglected. 

 

It can be shown that the deflections due to shear deformations are usually small and hence can 

be ignored. 
 

 

Consider a beam AB which is initially straight and horizontal when unloaded. If under the 

action of loads the beam deflect to a position A'B' under load or infact we say that the axis of 

the beam bends to a shape A'B'. It is customary to call A'B' the curved axis of the beam as the 

elastic line or deflection curve. 

 

In the case of a beam bent by transverse loads acting in a plane of symmetry, the bending 

moment M varies along the length of the beam and we represent the variation of bending 

moment in B.M diagram. Futher, it is assumed that the simple bending theory equation holds 

good. 



 

 

 

 
 

If we look at the elastic line or the deflection curve, this is obvious that the curvature at every 

point is different; hence the slope is different at different points. 

 

To express the deflected shape of the beam in rectangular co-ordinates let us take two axes x 

and y, x-axis coincide with the original straight axis of the beam and the y – axis shows the 

deflection. 

 

Futher,let us consider an element ds of the deflected beam. At the ends of this element let us 

construct the normal which intersect at point O denoting the angle between these two normal 

be di 

 

But for the deflected shape of the beam the slope i at any point C is defined, 

 

 

This is the differential equation of the elastic line for a beam subjected to bending in the plane 

of symmetry. Its solution y = f(x) defines the shape of the elastic line or the deflection curve as 

it is frequently called. 

 

Relationship between shear force, bending moment and deflection: The relationship among 

shear force,bending moment and deflection of the beam may be obtained as 

 

Differentiating the equation as derived 

 

 
Therefore, the above expression represents the shear force whereas rate of intensity of loading 

can also be found out by differentiating the expression for shear force 



 

 

 

 
 

Methods for finding the deflection: The deflection of the loaded beam can be obtained 

various methods. The one of the method for finding the deflection of the beam is the direct 

integration method, i.e. the method using the differential equation which we have derived. 

 

Direct integration method: The governing differential equation is defined as 

 

 
Where A and B are constants of integration to be evaluated from the known conditions of slope 

and deflections for the particular value of x. 

 

Illustrative examples : let us consider few illustrative examples to have a familiarty with the 

direct integration method 

 

Case 1: Cantilever Beam with Concentrated Load at the end:- A cantilever beam is subjected 

to a concentrated load W at the free end, it is required to determine the deflection of the beam 
 

 
In order to solve this problem, consider any X-section X-X located at a distance x from the left 

end or the reference, and write down the expressions for the shear force abd the bending 

moment 



 

 

 

 
 

The constants A and B are required to be found out by utilizing the boundary conditions as 

defined below 

 

i.e at x= L ; y= 0 ---------------------------- (1) 

 

at x = L ; dy/dx = 0 ------------------------- (2) 

 

Utilizing the second condition, the value of constant A is obtained as 

 



 

 

Case 2: A Cantilever with Uniformly distributed Loads:- In this case the cantilever beam is 

subjected to U.D.L with rate of intensity varying w / length. The same procedure can also be 

adopted in this case 
 

 

 
Boundary conditions relevant to the problem are as follows: 

 

1. At x = L; y = 0 

 

2. At x= L; dy/dx = 0 

 

The second boundary conditions yields 

 



 

 

Case 3: Simply Supported beam with uniformly distributed Loads:- In this case a simply 

supported beam is subjected to a uniformly distributed load whose rate of intensity varies as w 

/ length. 
 

 
In order to write down the expression for bending moment consider any cross-section at 

distance of x metre from left end support. 
 
 

 

 
Boundary conditions which are relevant in this case are that the deflection at each support must 

be zero. 

 

i.e. at x = 0; y = 0 : at x = l; y = 0 

 

let us apply these two boundary conditions on equation (1) because the boundary conditions 

are on y, This yields B = 0. 



 

 

 

 

 

 

 

 

 
 

Futher 
 

In this case the maximum deflection will occur at the centre of the beam where x = L/2 [ i.e. at 

the position where the load is being applied ].So if we substitute the value of x = L/2 

 

 
Conclusions 

 

(i) The value of the slope at the position where the deflection is maximum would be zero. 

 

(ii) The value of maximum deflection would be at the centre i.e. at x = L/2. 

 

The final equation which is governs the deflection of the loaded beam in this case is 

 

 

By successive differentiation one can find the relations for slope, bending moment, shear force 

and rate of loading. 
 

 

 

 

Deflection (y) 

 

 

 

 
Slope (dy/dx) 

 

Bending Moment 

 

 

 

 

 

 

 

 
 

 
So the bending moment diagram would be 

 



 

 

 

 
 

Shear Force 

 

Shear force is obtained by 

taking 

 

third derivative. 

 

Rate of intensity of loading 

 

Case 4: The direct integration method may become more involved if the expression for entire 

beam is not valid for the entire beam.Let us consider a deflection of a simply supported beam 

which is subjected to a concentrated load W acting at a distance 'a' from the left end. 
 

 

Let R1 & R2 be the reactions then, 
 
 



 

 

 

 
 

These two equations can be integrated in the usual way to find ‘y' but this will result in four 

constants of integration two for each equation. To evaluate the four constants of integration, 

four independent boundary conditions will be needed since the deflection of each support must 

be zero, hence the boundary conditions (a) and (b) can be realized. 

 

Further, since the deflection curve is smooth, the deflection equations for the same slope and 

deflection at the point of application of load i.e. at x = a. Therefore four conditions required to 

evaluate these constants may be defined as follows: 

 

(a) at x = 0; y = 0 in the portion AB i.e. 0 ≤ x ≤ a 

 

(b) at x = l; y = 0 in the portion BC i.e. a ≤ x ≤ l 

 

(c) at x = a; dy/dx, the slope is same for both portion 

 

(d) at x = a; y, the deflection is same for both portion 

By symmetry, the reaction R1 is obtained as 

 
Using condition (c) in equation (3) and (4) shows that these constants should be equal, hence 

letting 

 

K1 = K2 = K 
 

Hence 



 

 

 

 
 

Now lastly k3 is found out using condition (d) in equation (5) and equation (6), the condition 

(d) is that, 

 

At x = a; y; the deflection is the same for both portion 

 



 

 

 

 
 

ALTERNATE METHOD: There is also an alternative way to attempt this problem in a more 

simpler way. Let us considering the origin at the point of application of the load, 
 

 

 

Boundary conditions relevant for this case are as follows 

 

(i) at x = 0; dy/dx= 0 

hence, A = 0 

(ii) at x = l/2; y = 0 (because now l / 2 is on the left end or right end support since we have 

taken the origin at the centre) 



 

 

 

 
 

Hence the integration method may be bit cumbersome in some of the case. Another limitation 

of the method would be that if the beam is of non uniform cross section, 
 
 

 
i.e. it is having different cross-section then this method also fails. 

 

So there are other methods by which we find the deflection like 

 

1. Macaulay's method in which we can write the different equation for bending moment for 

different sections. 

 

2. Area moment methods 

 

3. Energy principle methods 

 

THE AREA-MOMENT / MOMENT-AREA METHODS: 

 

The area moment method is a semi graphical method of dealing with problems of deflection of 

beams subjected to bending. The method is based on a geometrical interpretation of definite 

integrals. This is applied to cases where the equation for bending moment to be written is 

cumbersome and the loading is relatively simple. 

 

Let us recall the figure, which we referred while deriving the differential equation governing 

the beams. 
 
 



 

 

It may be noted that dx is an angle subtended by an arc element ds and M is the bending moment 

to which this element is subjected. 

 

We can assume, 

 

ds = dx [since the curvature is small] 
 

 

 

The relationship as described in equation (1) can be given a very simple graphical interpretation 

with reference to the elastic plane of the beam and its bending moment diagram 
 

 

 

Refer to the figure shown above consider AB to be any portion of the elastic line of the loaded 

beam and A1B1is its corresponding bending moment diagram. 
 

Let AO = Tangent drawn at A 

BO = Tangent drawn at B 

Tangents at A and B intersects at the point O. 

 

Futher, AA ' is the deflection of A away from the tangent at B while the vertical distance B'B 

is the deflection of point B away from the tangent at A. All these quantities are futher 

understood to be very small. 

= ds 



 

 

Let ds ≈ dx be any element of the elastic line at a distance x from B and an angle 

 

 

 

This relationship may be interpreted as that this angle is nothing but the area M.dx of the shaded 

bending moment diagram divided by EI. 

 

From the above relationship the total angle   between the tangents A and B may be determined as 

 

 
Since this integral represents the total area of the bending moment diagram, hence we may 

conclude this result in the following theorem 

 

Theorem I: 

 

 

Now let us consider the deflection of point B relative to tangent at A, this is nothing 

but the vertical distance BB'. It may be note from the bending diagram that bending of the 

element ds contributes to this deflect 

may be considered as the arc of a circle of radius x subtended by the angle 

 

 
Hence the total distance B'B becomes 

 

The limits from A to B have been taken because A and B are the two points on the elastic curve, 

= M dx / EI as derived earlier 

 

 
[ This is infact the moment of area of the bending moment diagram] 

 

Since M dx is the area of the shaded strip of the bending moment diagram and x is its 

distance from B, we therefore conclude that right hand side of the above equation represents 

first moment area with respect to B of the total bending moment area between A and B divided 

by EI. 

 

Therefore,we are in a position to state the above conclusion in the form of theorem as follows: 

 

Theorem II: 

 

Deflection of point ‘B' relative to point A  

Futher, the first moment of area, according to the definition of centroid may be written as 

, where   is equal to distance of centroid and a is the total area of bending moment 



 

 

 

Thus, 
 

Therefore, the first moment of area may be obtained simply as a product of the total area of the 

B.M diagram between the points A and B multiplied by the distance to its centroid C. 

 

If there exists an inflection point or point of contreflexure for the elastic line of the loaded beam 
between the points A and B, as shown below, 

 

 
 

 

 
Then, adequate precaution must be exercised in using the above theorem. In such a case B. M 

diagram gets divide into two portions +ve and –ve portions with centroids C1and C2. Then to 

find an angle between the tangent sat the points A and B 

 

 
Illustrative Examples: Let us study few illustrative examples, pertaining to the use of these 

theorems 

 

Example 1: 

 

1. A cantilever is subjected to a concentrated load at the free end.It is required to find out the 

deflection at the free end. 

 

Fpr a cantilever beam, the bending moment diagram may be drawn as shown below 
 
 



 

 

Let us workout this problem from the zero slope condition and apply the first area - moment 

theorem 

 

 
The deflection at A (relative to B) may be obtained by applying the second area - moment 

theorem 

 

NOTE: In this case the point B is at zero slope. 

 

 
Example 2: Simply supported beam is subjected to a concentrated load at the mid span 

determine the value of deflection. 

 

A simply supported beam is subjected to a concentrated load W at point C. The bending 

moment diagram is drawn below the loaded beam. 
 
 

 
Again working relative to the zero slope at the centre C. 

 



 

 

 
 

Example 3: A simply supported beam is subjected to a uniformly distributed load, with a 

intensity of loading W / length. It is required to determine the deflection. 

 

The bending moment diagram is drawn, below the loaded beam, the value of maximum B.M 

is equal to Wl2 / 8 
 
 

 

So by area moment method, 

 

 
Macaulay's Methods 

 

If the loading conditions change along the span of beam, there is corresponding change 

in moment equation. This requires that a separate moment equation be written between each 

change of load point and that two integration be made for each such moment equation. 

Evaluation of the constants introduced by each integration can become very involved. 



 

 

Fortunately, these complications can be avoided by writing single moment equation in such a 

way that it becomes continuous for entire length of the beam in spite of the discontinuity of 

loading. 

 

Note : In Macaulay's method some author's take the help of unit function approximation (i.e. 

Laplace transform) in order to illustrate this method, however both are essentially the same. 

 

For example consider the beam shown in fig below: 

 

Let us write the general moment equation using the definition M = ( ∑ M )L, Which means that 

we consider the effects of loads lying on the left of an exploratory section. The moment 

equations for the portions AB,BC and CD are written as follows 
 

 
It may be observed that the equation for MCD will also be valid for both MAB and MBC provided 

that the terms ( x - 2 ) and ( x - 3 )2are neglected for values of x less than 2 m and 3 m, 

respectively. In other words, the terms ( x - 2 ) and ( x - 3 )2 are nonexistent for values of x for 

which the terms in parentheses are negative. 
 

 

 

 

 

 

 
As an clear indication of these restrictions, one may use a nomenclature in which the usual 

form of parentheses is replaced by pointed brackets, namely, ‹ ›. With this change in 

nomenclature, we obtain a single moment equation 

 

 

Which is valid for the entire beam if we postulate that the terms between the pointed brackets 

do not exists for negative values; otherwise the term is to be treated like any ordinary 

expression. 

 

As an another example, consider the beam as shown in the fig below. Here the distributed load 

extends only over the segment BC. We can create continuity, however, by assuming that the 

distributed load extends beyond C and adding an equal upward-distributed load to cancel its 



 

 

effect beyond C, as shown in the adjacent fig below. The general moment equation, written for 

the last segment DE in the new nomenclature may be written as: 
 

 

 

 

 

It may be noted that in this equation effect of load 600 N won't appear since it is just at the last 

end of the beam so if we assume the exploratary just at section at just the point of application 

of 600 N than x = 0 or else we will here take the X - section beyond 600 N which is invalid. 

 

Procedure to solve the problems 
 

(i). After writing down the moment equation which is valid for all values of ‘x' i.e. containing 

pointed brackets, integrate the moment equation like an ordinary equation. 

 

(ii). While applying the B.C's keep in mind the necessary changes to be made regarding the 

pointed brackets. 

 

llustrative Examples : 

 

1. A concentrated load of 300 N is applied to the simply supported beam as shown in Fig. 

Determine the equations of the elastic curve between each change of load point and the 

maximum deflection in the beam. 
 
 

 

Solution : writing the general moment equation for the last portion BC of the loaded beam, 



 

 

 

 
 

To evaluate the two constants of integration. Let us apply the following boundary 

conditions: 

 

1. At point A where x = 0, the value of deflection y = 0. Substituting these values in 

Eq. (3) we find C2 = 0.keep in mind that < x -2 >3 is to be neglected for negative values. 
 

2. At the other support where x = 3m, the value of deflection y is also zero. 

substituting these values in the deflection Eq. (3), we obtain 

 

Having determined the constants of integration, let us make use of Eqs. (2) and (3) to 

rewrite the slope and deflection equations in the conventional form for the two portions. 

 

 

Continuing the solution, we assume that the maximum deflection will occur in the segment 

AB. Its location may be found by differentiating Eq. (5) with respect to x and setting the 

derivative to be equal to zero, or, what amounts to the same thing, setting the slope equation 

(4) equal to zero and solving for the point of zero slope. 

 

We obtain 

 

50 x2– 133 = 0 or x = 1.63 m (It may be kept in mind that if the solution of the equation does 

not yield a value < 2 m then we have to try the other equations which are valid for segment 

BC) 

 

Since this value of x is valid for segment AB, our assumption that the maximum deflection 

occurs in this region is correct. Hence, to determine the maximum deflection, we substitute x 

= 1.63 m in Eq (5), which yields 

 



 

 

3. 

The negative value obtained indicates that the deflection y is downward from the x axis.quite 

usually only the magnitude of the deflection, without regard to sign, is desired; this is denoted 

by irected value of deflection. 

 

if E = 30 Gpa and I = 1.9 x 106 mm4 = 1.9 x 10 -6 m4 , Eq. (h) becomes 

 

 
Then 

 

Example 2: 

 

It is required to determine the value of EIy at the position midway between the supports and at 

the overhanging end for the beam shown in figure below. 
 

 

 

 

 
Solution: 

 

Writing down the moment equation which is valid for the entire span of the beam and applying 

the differential equation of the elastic curve, and integrating it twice, we obtain 

 

 

To determine the value of C2, It may be noted that EIy = 0 at x = 0,which gives C2 = 

0.Note that the negative terms in the pointed brackets are to be ignored Next,let us use the 

condition that EIy = 0 at the right support where x = 6m.This gives 

 

 
Finally, to obtain the midspan deflection, let us substitute the value of x = 3m in the 

deflection equation for the segment BC obtained by ignoring negative values of the bracketed 

terms - 4 4 and - 6 We obtain x x 



 

 

Example 3: 

 

A simply supported beam carries the triangularly distributed load as shown in figure. 

Determine the deflection equation and the value of the maximum deflection. 
 
 

 
Solution: 

 

Due to symmetry, the reactions is one half the total load of 1/2w0L, or R1 = R2 = 1/4w0L.Due 

to the advantage of symmetry to the deflection curve from A to B is the mirror image of that 

from C to B. The condition of zero deflection at A and of zero slope at B do not require the use 

of a general moment equation. Only the moment equation for segment AB is needed, and this 

may be easily written with the aid of figure(b). 

 

Taking into account the differential equation of the elastic curve for the segment AB and 

integrating twice, one can obtain 

 

 
In order to evaluate the constants of integration,let us apply the B.C'swe note that at the support 

A, y = 0 at x = 0.Hence from equation (3), we get C2 = 0. Also,because of symmetry, the slope 

dy/dx = 0 at midspan where x = L/2.Substituting these conditions in equation (2) we get 

 

 

Hence the deflection equation from A to B (and also from C to B because of symmetry) 

becomes 

 



 

 

Example 4: couple acting 

 

Consider a simply supported beam which is subjected to a couple M at a distance 'a' from the 

left end. It is required to determine using the Macauley's method. 
 

 

 
 

 

 

Therefore, writing the general moment equation we get 

 

 
Example 5:A simply supported beam is subjected to U.d.l in combination with couple M. It is 

required to determine the deflection. 
 

 

This problem may be attemped in the some way. The general moment equation my be written 

as 

 

 
Integrate twice to get the deflection of the loaded beam. 



 

 

UNIT-V 

THIN CYLINDERS,SPHERES AND THICK CYLINDERS 
 

Members Subjected to Axisymmetric Loads 
 

Pressurized thin walled cylinder: 

 

Preamble : Pressure vessels are exceedingly important in industry. Normally two types of 

pressure vessel are used in common practice such as cylindrical pressure vessel and spherical 

pressure vessel. 

 

In the analysis of this walled cylinders subjected to internal pressures it is assumed that the 

radial plans remains radial and the wall thickness dose not change due to internal pressure. 

Although the internal pressure acting on the wall causes a local compressive stresses (equal to 

pressure) but its value is neglibly small as compared to other stresses & hence the sate of stress 

of an element of a thin walled pressure is considered a biaxial one. 

 

Further in the analysis of them walled cylinders, the weight of the fluid is considered neglible. 

 

Let us consider a long cylinder of circular cross - section with an internal radius of R 2 and a 

constant wall thickness‘t' as showing fig. 
 

 
This cylinder is subjected to a difference of hydrostatic pressure of ‘p' between its inner and 

outer surfaces. In many cases, ‘p' between gage pressure within the cylinder, taking outside 

pressure to be ambient. 

 

By thin walled cylinder we mean that the thickness‘t' is very much smaller than the radius 

Ri and we may quantify this by stating than the ratio t / Ri of thickness of radius should be less 

than 0.1. 

 

An appropriate co-ordinate system to be used to describe such a system is the cylindrical polar 

one r, , z shown, where z axis lies along the axis of the cylinder, r is radial to it and  
the angular co-ordinate about the axis. 

 

The small piece of the cylinder wall is shown in isolation, and stresses in respective direction 

have also been shown. 

 

Type of failure: 

 

Such a component fails in since when subjected to an excessively high internal pressure. While 

it might fail by bursting along a path following the circumference of the cylinder. Under normal 

circumstance it fails by circumstances it fails by bursting along a path parallel to the axis. This 

suggests that the hoop stress is significantly higher than the axial stress. 



 

 

In order to derive the expressions for various stresses we make following 

 

Applications : 

 

Liquid storage tanks and containers, water pipes, boilers, submarine hulls, and certain air plane 

components are common examples of thin walled cylinders and spheres, roof domes. 

 

ANALYSIS : In order to analyse the thin walled cylinders, let us make the following 

assumptions : 

 

• There are no shear stresses acting in the wall. 

 

• The longitudinal and hoop stresses do not vary through the wall. 

 

• Radial stresses r which acts normal to the curved plane of the isolated element are neglibly 

small as compared to other two stresses especially when 

The state of tress for an element of a thin walled pressure vessel is considered to be biaxial, 
although the internal pressure acting normal to the wall causes a local compressive stress equal 

to the internal pressure, Actually a state of tri-axial stress exists on the inside of the vessel. 

However, for then walled pressure vessel the third stress is much smaller than the other two 

stresses and for this reason in can be neglected. 

 

Thin Cylinders Subjected to Internal Pressure: 

 

When a thin – walled cylinder is subjected to internal pressure, three mutually perpendicular 

principal stresses will be set up in the cylinder materials, namely 

 

• Circumferential or hoop stress 

 

• The radial stress 

 

• Longitudinal stress 

 

now let us define these stresses and determine the expressions for them 

 

Hoop or circumferential stress: 

 

This is the stress which is set up in resisting the bursting effect of the applied pressure and can 

be most conveniently treated by considering the equilibrium of the cylinder. 
 



 

 

 

In the figure we have shown a one half of the cylinder. This cylinder is subjected to an internal 

pressure p. 

 

i.e. p = internal pressure 

d = inside diameter 

L = Length of the cylinder 

t = thickness of the wall 

Total force on one half of the cylinder owing to the internal pressure 'p' 

 

= p x Projected Area 

 

= p x d x L 

 

= p .d. L ------------------------- (1) 

 

The total resisting force owing to hoop stresses σH set up in the cylinder walls 
 

= 2 .σH .L.t --------------------- (2) 
 

Because H.L.t. is the force in the one wall of the half cylinder. 

the equations (1) & (2) we get 

2 . σH . L . t = p . d . L 

 

σH = (p . d) / 2t 
 

 

Longitudinal Stress: 

 

Consider now again the same figure and the vessel could be considered to have closed ends 

and contains a fluid under a gage pressure p. Then the walls of the cylinder will have a 

longitudinal stress as well as a circumferential stress. 
 
 

 
Total force on the end of the cylinder owing to internal pressure 

 

= pressure x area 

 

= p x πd2 /4 

 

Area of metal resisting this force = πd.t. (approximately) 

because 

Circumferential or 

Stress (σH) = (p .d)/ 2t 

hoop 



 

 

 

 

 

Change in Dimensions : 
 

The change in length of the cylinder may be determined from the longitudinal strain. 

 

Since whenever the cylinder will elongate in axial direction or longitudinal direction, this will 

also get decreased in diameter or the lateral strain will also take place. Therefore we will have 

to also take into consideration the lateral strain.as we know that the poisson's ratio (ν) is 

 

 
where the -ve sign emphasized that the change is negative 

 

Consider an element of cylinder wall which is subjected to two mutually 𝜎r normal stresses σL 

and σH . 
 

Let E = Young's modulus of elasticity 
 
 



 

 

 

 
 

Volumetric Strain or Change in the Internal Volume: 

 

When the thin cylinder is subjected to the internal pressure as we have already calculated that 

there is a change in the cylinder dimensions i.e, longitudinal strain and hoop strains come into 

picture. As a result of which there will be change in capacity of the cylinder or there is a change 

in the volume of the cylinder hence it becomes imperative to determine the change in volume 

or the volumetric strain. 

 

The capacity of a cylinder is defined as 

V = Area X Length 

= πd2/4 x L 

 

Let there be a change in dimensions occurs, when the thin cylinder is subjected to an internal 

pressure. 

 

(i) The diameter d changes to δ d + δ d 

 

(ii) The length L changes to δ L + δ L 

 

Therefore, the change in volume = Final volume - Original volume 



 

 

 

 

 

Therefore to find but the increase in capacity or volume, multiply the volumetric strain by 

original volume. 

 

Hence 

 

Change in Capacity / Volume or 

 

 

 
 

Cylindrical Vessel with Hemispherical Ends: 

 

Let us now consider the vessel with hemispherical ends. The wall thickness of the cylindrical 

and hemispherical portion is different. While the internal diameter of both the portions is 

assumed to be equal 

 

Let the cylindrical vassal is subjected to an internal pressure p. 



 

 

 
 

For the Cylindrical Portion 

 

 

For The Hemispherical Ends: 
 

 

Because of the symmetry of the sphere the stresses set up owing to internal pressure will be 

two mutually perpendicular hoops or circumferential stresses of equal values. Again the radial 

stresses are neglected in comparison to the hoop stresses as with this cylinder having thickness 

to diameter less than1:20. 

 

Consider the equilibrium of the half – sphere 

 

Force on half-sphere owing to internal pressure = pressure x projected Area 

 

= p. πd2/4 

 



 

 

 

 
 

Fig – shown the (by way of dotted lines) the tendency, for the cylindrical portion and the 

spherical ends to expand by a different amount under the action of internal pressure. So owing 

to difference in stress, the two portions (i.e. cylindrical and spherical ends) expand by a 

different amount. This incompatibly of deformations causes a local bending and sheering 

stresses in the neighbour hood of the joint. Since there must be physical continuity between the 

ends and the cylindrical portion, for this reason, properly curved ends must be used for pressure 

vessels. 

 

Thus equating the two strains in order that there shall be no distortion of the junction 

 

 
But for general steel works ν = 0.3, therefore, the thickness ratios becomes 

 

t2 / t1 = 0.7/1.7 or 
 

 

i.e. the thickness of the cylinder walls must be approximately 2.4 times that of the hemispheroid 

ends for no distortion of the junction to occur. 

 

SUMMARY OF THE RESULTS : Let us summarise the derived results 

 

(A) The stresses set up in the walls of a thin cylinder owing to an internal pressure p are : 

 

(i) Circumferential or loop stress 

 

σH = pd/2t 
 

(ii) Longitudinal or axial stress 

 

σL = pd/4t 
 

Where d is the internal diameter and t is the wall thickness of the cylinder. 

then 

Longitudinal strain eL 

 

Hoop stain eH = 1 / E [ H ν L ] 

 

(B) Change of internal volume of cylinder under pressure 

 

 
(C) Fro thin spheres circumferential or loop stress 

L ν H] 

t1 = 2.4 t2 



 

 

 

 
 

Thin rotating ring or cylinder 
 

Consider a thin ring or cylinder as shown in Fig below subjected to a radial internal pressure p 

caused by the centrifugal effect of its own mass when rotating. The centrifugal effect on a unit 

length of the circumference is 

 

p = m ω2 r 
 
 

 
Fig 19.1: Thin ring rotating with constant angular velocity ω 

 

Here the radial pressure ‘p' is acting per unit length and is caused by the centrifugal effect if its 

own mass when rotating. 

 

Thus considering the equilibrium of half the ring shown in the figure, 

2F = p x 2r (assuming unit length), as 2r is the projected area 

F = pr 

 

Where F is the hoop tension set up owing to rotation. 

 

The cylinder wall is assumed to be so thin that the centrifugal effect can be assumed constant 

across the wall thickness. 

 

F = mass x acceleration = m ω2 r x r 

 

This tension is transmitted through the complete circumference and therefore is resisted by the 

complete cross – sectional area. 

 

Hoop stress = F/A = m ω2 r2 / A 

 

Where A is the cross – sectional area of the ring. 

 

Now with unit length assumed m/A is the mass of the material per unit volume, i.e. the density 

ρ . 

 

hoop stress = ρ ω2 r2 

σH = ρ. ω2 . r2 


